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Abstract
We introduce (p − 1) pseudocharacters in the space of (1, p) model vacuum
torus amplitudes to complete the distinguished basis in the 2p-dimensional
fusion algebra to a basis in the whole (3p − 1)-dimensional space of torus
amplitudes, and the structure constants in this basis are (not necessarily non-
negative) integer numbers. We obtain a generalized Verlinde formula that gives
these structure constants. In the context of theories with boundaries, we identify
the space of vacuum torus amplitudes with the space of Ishibashi states. Then,
we propose (3p − 1) boundary states satisfying the Cardy condition.

PACS numbers: 02.20.Uw, 11.25.Hf

1. Introduction

1.0. Logarithmic conformal field theories [1–9] attract attention because of their significance
for applications (like the sand-pile model [10, 11] and percolation [12–14]) as well as for
general questions in the theory itself [15, 16]. Between logarithmic conformal field theories
the (1, p) models [17, 18] are studied in most detail [1, 4, 19]. The (1, p) models are
characterized by the central charge

c = 13 − 6(p + p−1), (1.1)

and the spectrum of conformal dimensions of primary fields is given by

�r = r2 − 1

4p
+

1 − r

2
, 1 � r � p.

The chiral symmetry algebra of the (1, p) models is the triplet W algebra [20], which we
denote in what follows as Wp.

Logarithmic conformal field theories with boundaries are of great importance in
considering their applications in lattice models, which usually involve boundaries [2, 21, 22].
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Various attempts to understand boundary logarithmic theories have been made in the past
[23–28] and recently [29, 30].

In this paper, we propose using the Kazhdan–Lusztig correspondence stated for some
logarithmic models [5, 32, 33] in studying the boundary theories. The Kazhdan–Lusztig
correspondence for the (1, p) models is an equivalence [34] between the representation
categories of the triplet algebra Wp and the restricted quantum group Uqs�(2), with q = e

iπ
p .

These categories are equivalent to the tensor categories (see [31, 34, 36]). The representation
category of Uqs�(2) is not braided [35], but is very close to braided (we discuss this subtlety
in conclusion). This equivalence leads to the following identifications:

(1) the center Zcft of the Wp representation category and the center Z of Uqs�(2) are
isomorphic as associative commutative algebras;

(2) the modular group actions on Zcft and Z are equivalent.

In what follows, we use several equivalent definitions of Zcft. The most general definition of
Zcft is given in categorical terms as endomorphisms of the identity functor. More practical
definitions of Zcft are given for rational models in [37]. The space Zcft is spanned by central
elements (or endomorphisms) of the bimodule structure on the full space of bulk states; we
mean the bimodule structure with respect to the chiral and antichiral actions. As in rational
cases [37], in the context of the boundary theories, these endomorphisms can be identified
with the boundary states. Therefore, keeping in mind the identifications (1) and (2), the
center Z of Uqs�(2) and some additional structures (multiplication, modular group action)
on it allow describing the space of the boundary states for the (1, p) models. The space
Zcft can also be identified with the space of torus amplitudes as in [37, formula (2.6)]. The
difference between the semisimple and logarithmic/nonsemisimple cases is that the boundary
states corresponding to the different (irreducible and indecomposable) modules of a chiral
algebra are not necessarily orthogonal (see (5.1)–(5.7)) and therefore Zcft is spanned not only
by characters of irreducible representations but also by some additional functions.

1.1. Our main results.

The space Zcft is (3p − 1) dimensional and has a distinguished basis of the vacuum torus
amplitudes, i.e. of the characters

χ±
s (τ ) = TrX±(s)q

L0− c
24 , 1 � s � p, (1.2)

and the pseudocharacters

χs(τ ) = TrP+(s)⊕P−(p−s)

(
qL0− c

24 111111
)
, 1 � s � p − 1,

where 111111 is the logarithmic partner of the identity operator 1, and P±(s) are the projective
covers of the irreducible Wp representations X±(s); here, we also set q = e2iπτ , where τ is
the modular parameter. The space Zcft can be endowed with a commutative associative algebra
structure, which we introduce below in section 2.5. The structure constants in Zcft on the basis
of the characters and pseudocharacters are the integer numbers.

1.1.1. Proposition. For 1 � r, s � p, and α, β = ±,

χα
r χβ

s =
r+s−1∑

t=|r−s|+1
step=2

χ̃
αβ
t , χ̃α

t =
{

χα
t , 1 � t � p,

χα
2p−t + 2χ−α

t−p, p + 1 � t � 2p − 1,
(1.3)
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and, for 1 � r, s � p − 1,

χ+
r χs =

min(r+s−1,
2p−r−s−1)∑
t=|r−s|+1

step=2

χt , χ−
p−rχs = −

min(r+s−1,
2p−r−s−1)∑
t=|r−s|+1

step=2

χt , χ±
p χs = 0, χrχs = 0,

where we set χ±
s = χ±

s (τ ) and χs = χs(τ ) for simplicity.

Multiplication (1.3) was first derived in [38] as fusion of irreducible Wp representations and
was subsequently shown in [32] to be the Grothendieck ring of Uqs�(2). The elements χ±

s

span the fusion algebra G ⊂ Zcft; the pseudocharacters χs span a (p − 1) dimensional ideal
in Zcft.

The space Zcft admits the modular group action generated by

S : τ �→ −1/τ, T : τ �→ τ + 1.

The structure constants in proposition 1.1.1 are reproduced from the S-matrix action and
we thus get a generalized Verlinde formula for the (1, p) models.

1.1.2. Proposition. The structure constants in Zcft with respect to the basis of the characters
and pseudocharacters are given by

N
[k;γ ]
[r;α][s;β] =

p+1∑
l=1

nl∑
λ=1

Svac
[l;1]S

[r;α]
[l;1] S

[s;β]
[l;λ] + Svac

[l;1]S
[r;α]
[l;λ] S

[s;β]
[l;1] − Svac

[l;λ]S
[r;α]
[l;1] S

[s;β]
[l;1](

Svac
[l;1]

)2 S
[l;λ]
[k;γ ], (1.4)

where 1 � r, s, k � p + 1, 1 � α, β, γ � nl � 3, and Svac
[r;α] are the ‘vacuum’ row elements

(the notations are introduced below in sections 2 and 4).

We note that the structure constants N
[k;γ ]
[r;α][s;β] are integers and are non-negative whenever α, β

and γ are not equal to 1.
The Verlinde formula (1.4) can be considered as a generalization of the (1, p) model

Verlinde formulas derived in [38, 30] because (1.4) gives the structure constants in the whole
space of torus amplitudes, in which the fusion algebra is a 2p-dimensional subalgebra.

The generalized Verlinde formula (1.4) is based on the following findings. The
multiplication in Zcft in the basis

φ±
s = S(χ±

s ), φs = S(χs) (1.5)

is block diagonal, and the structure constants are expressed in terms of the S-matrix vacuum
row elements.

1.1.3. Proposition. For 1 � r, s � p − 1, the only nonzero multiplications in Zcft with respect
to the basis (1.5) are given by

φrφr = 1

Svac
[r;1]

(
φr − Svac

[r;2]

Svac
[r;1]

φ+
r − Svac

[r;3]

Svac
[r;1]

φ−
p−r

)
,

φrφ
+
r = 1

Svac
[r;1]

φ+
r , φrφ

−
p−r = 1

Svac
[r;1]

φ−
p−r ,

φ+
pφ+

p = 1

Svac
[p;1]

φ+
p, φ−

p φ−
p = 1

Svac
[p+1;1]

φ−
p .

Here, Svac
[r;α], with α = 1, 2, 3, are the ‘vacuum’ row elements (the notations are introduced

below in section 2).

3



J. Phys. A: Math. Theor. 42 (2009) 315207 A M Gainutdinov and I Yu Tipunin

1.1.4. Boundary states. We identify the space of boundary states with the space of vacuum
torus amplitudes Zcft. Then, we define (3p−1) Cardy states as states that satisfy the (extended)
Cardy condition:

〈〈[r;α]||q 1
2 (L0+L̄0− c

12 )||[s;β]〉〉 =
p+1∑
k=1

nk∑
γ=1

N
[k;γ ]
[r;α][s;β]χ[k;γ ](̃q),

where q̃ = e−2iπ/τ and the integer structure constants N
[k;γ ]
[r;α][s;β] are given in (1.4), with the

notations introduced in sections 2 and 5. We note that 2p Cardy states corresponding to the
Greek indices taking values 2 and 3 are usual Cardy states as in rational models, but (p − 1)

states corresponding to the Greek indices equal to 1 are some new objects typical for LCFTs.
This paper is organized as follows. In section 2, we introduce the space Zcft of vacuum

torus amplitudes for the (1, p) models and recall the modular group action onZcft in section 2.4,
closely following to [38, 32]. In section 2.5, we introduce an associative algebra structure
in the space of torus amplitudes. Section 3 is designed to compute the multiplications in Zcft
using some quantum-group techniques. In section 3.1, we recall the quantum group Uqs�(2)

dual to the triplet algebra Wp. In section 3.4, we calculate the multiplications in the center
Z with respect to two distinguished bases related by the S-transformation from the modular
group and we thus obtain the multiplications in Zcft. In section 4, these results are then applied
to obtain a generalized Verlinde formula for the (1, p) models. With this information we
then analyze the boundary states for the (1, p) models in section 5. Conclusions are given in
section 6. The appendices contain auxiliary or bulky facts and proofs.

Notations

We use the standard abuse of notation for characters: we write χ(τ) for χ(e2iπτ ) and set in
what follows

q = e2iπτ , q̃ = e−2iπ/τ .

We set in the paper

q = e
iπ
p ,

for an integer p � 2, and use the standard notation

[n] = qn − q−n

q − q−1
, n ∈ Z, [n]! = [1][2] · · · [n], n ∈ N, [0]! = 1

(without indicating the ‘base’ q explicitly) and set

[m

n

]
=
⎧⎨⎩0, n < 0 or m − n < 0,

[m]!

[n]![m − n]!
otherwise.

For the Hopf algebras in general and for Uqs�(2) specifically, we write �, ε and S for the
comultiplication, counit and antipode, respectively.

We write x ′, x ′′ (Sweedler’s notation) in �(x) = ∑
(x) x ′ ⊗ x ′′.

For a linear function β, we use the notation β(?), where ? indicates the position of its
argument in more complicated constructions.
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2. The space Zcft of (1, p) model torus amplitudes

We briefly recall the definition of the (1, p) logarithmic models and their chiral symmetry
algebra in section 2.1. We introduce the space of vacuum torus amplitudes associated with
the (1, p) logarithmic models in section 2.3 and recall their modular properties in section 2.4.
In section 2.5, we introduce multiplication in the space of torus amplitudes.

2.1. Logarithmic (1, p) models

Here, we closely follow [38]. Logarithmic (1, p) models are defined as kernels of certain
screening operators, which commute with the Virasoro algebra. The actual symmetry of the
theory is the maximal local algebra in this kernel. In a (1, p) model, which is the kernel of the
‘short’ screening operator, see [38], this is the triplet W -algebra Wp studied in [20, 1]. The
chiral algebra Wp has 2p irreducible representations X±(s) and 2p projective covers P±(s)

[38] of the irreducibles (1 � s � p). The quantum group counterparts of these modules are
defined in appendix B.

2.2. The logarithmic partner of 1

In what follows, we need to define logarithmic partner 111111 of the identity operator 1. In
conformal field theory, an operator–state correspondence is supposed. It means that a field
corresponds to any state and any state can be obtained by the action of the zero mode of a field
on the vacuum |0〉. In particular, 1 corresponds to the vacuum itself.

The state |0〉 is the highest weight vector of the irreducible module X +(1), which is
called the vacuum module. In the logarithmic (1, p) models, X +(1) is a submodule in the
reducible but indecomposable logarithmic module P+(1). The module P+(1) is cyclic and can
be generated from the vector |〉, which can be chosen in such a way that |〉 → |0〉 under
the natural surjection P+(1) → X +(1).

Due to the operator–state correspondence there is a field 111111(z) that corresponds to the state
|〉 :

|〉 = 111111(z)1|z→0 . (2.1)

We call the field 111111(z) logarithmic partner of 1. In what follows, we abuse notation and use
the symbol 111111 for the field and its zero mode.

2.3. The space of (1, p) model torus amplitudes

The space Zcft of the vacuum torus amplitudes is (3p − 1) dimensional1 and is spanned by 2p

characters of irreducible representations X±(s) of Wp,

χ+
s (τ ) = TrX +(s)e

2iπτ(L0− c
24 ), χ−

s (τ ) = TrX−(s)e
2iπτ(L0− c

24 ), 1 � s � p, (2.2)

given in (A.1) in terms of theta functions, and (p − 1) pseudocharacters assigned to the
projective modules P+(s) ⊕ P−(p − s),

χs(τ ) = a0τ

(
p − s

p
χ+

s (τ ) − s

p
χ−

p−s(τ )

)
= TrP+(s)⊕P−(p−s)

(
e2iπτ(L0− c

24 )111111
)
, 1 � s � p − 1, (2.3)

where 111111 is the logarithmic partner of the vacuum field (identity operator 1) and a0 is an
arbitrary nonzero constant. The pseudocharacters χs(τ ) are given in (A.2).

1 See [39] for the case p = 2.
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2.3.1. Remark. We note that the pseudocharacters (2.3) have no canonical normalization and
are therefore defined up to a common nonzero constant a0. However, the constant a0 does not
appear in final results.

We define a vector of the characters and the pseudocharacters:

(χ1(τ ), χ+
1 (τ ), χ−

p−1(τ ), . . . , χp−1(τ ), χ+
p−1(τ ), χ−

1 (τ )︸ ︷︷ ︸
3×(p−1)

, χ+
p(τ ), χ−

p (τ )), (2.4)

where we group the characters and pseudocharacters into (p − 1) triplets{
χs(τ ), χ+

s (τ ), χ−
p−s(τ )

}
, for 1 � s � p − 1, and into two singlets χ+

p(τ ) and χ−
p (τ ).

In what follows, we use 2 -index parameterization of the elements in (2.4),

(χ[s;1](τ ), χ[s;2](τ ), χ[s;3](τ )) = (
χs(τ ), χ+

s (τ ), χ−
p−s(τ )

)
, 1 � s � p − 1,

χ[p;1](τ ) = χ+
p(τ ), χ[p+1;1](τ ) = χ−

p (τ ).
(2.5)

2.4. The modular group action on Zcft

The SL(2, Z) action in terms of the vector (χ[s;α](τ )) in (2.5) can be written as follows:

χ[s;α](−1/τ) =
p+1∑
j=1

nj∑
β=1

S[s;α][j ;β]χ[j ;β](τ ), 1 � s � p − 1,

where nj = 3, for 1 � j � p − 1, and nj = 1, for j = p, p + 1, and the matrix S[s;α][j ;β] has
the following block structure [32] (see also [38, 40]):

3 × 3 · · · 3 × 3 3 × 2
...

. . .
...

...

3 × 3 · · · 3 × 3 3 × 2
2 × 3 · · · 2 × 3 2 × 2

, (2.6)

where the 3 × 3 blocks, labeled by (s, j) with s, j = 1, . . . , p − 1, are given by⎛⎝S[s;1][j ;1] S[s;1][j ;2] S[s;1][j ;3]

S[s;2][j ;1] S[s;2][j ;2] S[s;2][j ;3]

S[s;3][j ;1] S[s;3][j ;2] S[s;3][j ;3]

⎞⎠

= (−1)p+s+j

√
2p

⎛⎜⎜⎜⎜⎜⎜⎝
0 a0

p − j

p
(qsj − q−sj ) −a0

j

p
(qsj − q−sj )

− 1

a0
(qsj − q−sj )

s

p
(qsj + q−sj )

s

p
(qsj + q−sj )

1

a0
(qsj − q−sj )

p − s

p
(qsj + q−sj )

p − s

p
(qsj + q−sj )

⎞⎟⎟⎟⎟⎟⎟⎠ , (2.7)

with q = e
iπ
p , the 3 × 2 blocks, labeled by (s, p) with s = 1, . . . , p − 1, are⎛⎝S[s;1][p;1] S[s;1][p+1;1]

S[s;2][p;1] S[s;2][p+1;1]

S[s;3][p;1] S[s;3][p+1;1]

⎞⎠ = 1

p
√

2p

⎛⎝ 0 0
s (−1)p−ss

p − s (−1)p−s(p − s)

⎞⎠ , (2.8)

the 2 × 3 blocks, labeled by (p, j) with j = 1, . . . , p − 1, are(
S[p;1][j ;1] S[p;1][j ;2] S[p;1][j ;3]

S[p+1;1][j ;1] S[p+1;1][j ;2] S[p+1;1][j ;3]

)
= 2√

2p

(
0 1 1
0 (−1)p−j (−1)p−j

)
, (2.9)

6
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and the 2 × 2 block is given by(
S[p;1][p;1] S[p;1][p+1;1]

S[p+1;1][p;1] S[p+1;1][p+1;1]

)
= 1√

2p

(
1 1
1 (−1)p

)
. (2.10)

The S-matrix has a distinguished row(
Svac

[j ;β]

) = (S[1;2][j ;β]), (2.11)

which corresponds to the S-transformation of the vacuum representation character χ+
1 (τ ):

χ+
1 (−1/τ) =

p+1∑
j=1

nj∑
β=1

Svac
[j ;β]χ[j ;β](τ ).

The T-transformation on the space of torus amplitudes is given in [38] and we do not
reproduce the T-action here. In what follows, we need the properties of Zcft with respect to the
S-transformation only.

2.5. Multiplication in the space of torus amplitudes

The space of vacuum torus amplitudes can be endowed with an associative commutative
algebra structure in the way similar to the one in [41, 42] for semisimple (rational) cases.
Here, we introduce such algebra structure on the space Zcft of torus amplitudes for the (1, p)

models. But the reader should note that we give only heuristic description.
Let a and b denote two basic Dehn twists in a torus depicted in figure (2.12).

�
�
�
�
��

τ

�
1
�
�
�
�
�

�a

�
��
�
�
�

b

(2.12)

where τ is in the upper-half plane. The characters χ±
s (τ ) in (1.2) and the pseudocharacters

χs(τ ) in (2.3) are the conformal blocks of zero-point correlations on the torus. We depict
these conformal blocks as

χ±
s (τ ) = ��

��
�

χ±
s

χs(τ ) = ��
��

�

���	111111

χs

with the cycles corresponded to the b cycle in the torus. Next, we introduce the conformal
blocks

F±,s
r,r∗(z − w) = ��

��
�

χ±
s

1
����

ψr(z) ψr∗ (w)

F s
r,r∗(z − w) = ��

��
�

���	111111

χs

1
��

ψr(z)

��

ψr∗ (w)

7
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for two-point correlators 〈ψr(z)ψr∗(w)〉 with the self-conjugate primary fields ψr(z) (r = r∗)
with respect to Wp. The characters χ±

s (τ ) and the pseudocharacters χs(τ ) can be obtained
from these conformal blocks in the limit of coinciding points,

χ±
s (τ ) = lim

z→w
(z − w)�rF±,s

r,r∗(z − w), χs(τ ) = lim
z→w

(z − w)�rF s
r,r∗(z − w),

where �r is the conformal dimension of ψr(z).
We define multiplication ‘�’ of a primary field ψr(z) with χ±

s (τ ) and χs(τ ) as a result
of computing the monodromy, along the b cycle, of the conformal blocks F±,s

r,r∗(z − w) and
F s

r,r∗(z − w) with respect to the z coordinate:

ψr(z) � χ±
s (τ ) = 
�

�
� χ±

s

1
�

�
�

�

ψr(z) ψr∗ (w)
�

b

ψr(z) � χs(τ ) = 
�
����	111111

� χs

1
�

�
�

�

ψr(z) ψr∗ (w)
�

b

and taking the limit of coinciding points at the end of the computation. Then, the multiplication
in the space Zcft of the vacuum torus amplitudes is defined as follows:

χ±
r χα

s = ψ±
r (z) � χα

s (τ ), χ±
r χs = ψ±

r (z) � χs(τ ), χrχs = ψr(z) � χs(τ ),

where α ∈ {+,−}, ψ±
r (z) are the primary fields of X±(r), and ψr(z) are the appropriate

logarithmic partners.
The Kazhdan–Lusztig correspondence stated in [32] for the (1, p) logarithmic models

have led in [34] to an equivalence between representation categories of the chiral algebra Wp

and of Uqs�(2). Such remarkable correspondence suggests an isomorphism between the space
Zcft of torus amplitudes in the (1, p) models and the center Z of Uqs�(2) as unital commutative
associative algebras. We compute the introduced multiplication in Zcft below in section 3.4
using a quantum-group approach.

3. The quantum group center Z

To describe Zcft as an associative commutative algebra, we first recall some facts about the
center Z of the restricted quantum group Uqs�(2). As was shown in [32], the center Z is
(3p−1) dimensional and admits an SL(2, Z) action in the following way. The space Z contains
two special bases. The first one consists of the images of characters and pseudocharacters
(those associated with some indecomposable representations) under the Drinfeld mapping
χ [43] and the second one under the Radford mapping φφφ [44]. We call these bases the
Drinfeld and Radford bases, respectively. Then, the S-transformation from the modular group
maps each vector from the Drinfeld basis to a vector from the Radford basis and vice versa
[46, 47, 51]. Schematically, the modular group action on the center is given by the diagrams

: Ch
φφφ

Z Z

: Z
v

Z ,S T

8
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where S = ( 0 1
−1 0

)
, T = (1 1

0 1

)
and Ch is the space of characters and pseudocharacters, and v

is a ribbon element.
As we show below in section 3.4, the structure constants in Z with respect to the Drinfeld

basis are integer numbers, while in the Radford basis the multiplication is block diagonal, and
the structure constants are expressed in terms of the S-matrix vacuum row elements. We then
use this information and the isomorphism [32] between Z and Zcft as SL(2, Z) representations
in section 4 to obtain the generalized Verlinde formula (1.4) for the (1, p) models.

3.1. The definition of Uqs�(2)

The quantum group dual to the (1, p) logarithmic model with the chiral algebra Wp is the
‘restricted’ quantum s�(2) denoted as Uqs�(2) [32] with

q = e
iπ
p .

The three generators E,F and K satisfy the standard relations for the quantum s�(2),

KEK−1 = q2E, KFK−1 = q−2F, [E,F ] = K − K−1

q − q−1
,

with some additional constraints,

Ep = Fp = 0, K2p = 1,

and the Hopf-algebra structure is given by

�(E) = 1 ⊗ E + E ⊗ K, �(F) = K−1 ⊗ F + F ⊗ 1, �(K) = K ⊗ K,

ε(E) = ε(F ) = 0, ε(K) = 1,

S(E) = −EK−1, S(F ) = −KF, S(K) = K−1.

The elements of the PBW basis of Uqs�(2) are enumerated as EiKjF � with 0 � i �
p − 1, 0 � j � 2p − 1, 0 � � � p − 1, and its dimension is therefore 2p3.

3.2. The quantum group center

Here, we describe the center Z of Uqs�(2) in terms of the Drinfeld basis and the Radford
basis. To construct these bases, we first use the irreducible and projective modules over
Uqs�(2) to produce the space Ch = Ch(Uqs�(2)) of q-characters, which is dual to the center.
The irreducible and projective modules are defined in appendix B. Then, we obtain two
distinguished bases in the center related to the S-transformation. In order to be self-contained
we begin by reviewing some standard facts about the spaceCh of q-characters, and the Radford
and Drinfeld maps, following [32, 33].

3.2.1. The space of q-characters for Uqs�(2). For a Hopf algebra A, the space Ch = Ch(A)

of q-characters is defined as

Ch(A) = {β ∈ A∗|Ad∗
x(β) = ε(x)β ∀x ∈ A}

= {β ∈ A∗|β(xy) = β
(
S2(y)x)∀x, y ∈ A}, (3.1)

where the co-adjoint action Ad∗
a : A∗ → A∗ is Ad∗

a(β) = β
(∑

(a) S(a′)?a′′), a ∈ A, β ∈ A∗

and S is the antipode.
In what follows, we need the so-called balancing element g ∈ A that satisfies [43]

�(g) = g ⊗ g, S2(x) = gxg−1, (3.2)

for all x ∈ A. For A = Uqs�(2), g = Kp+1 (see [32]).

9



J. Phys. A: Math. Theor. 42 (2009) 315207 A M Gainutdinov and I Yu Tipunin

3.2.2. Irreducible representation traces. The space of q-characters contains a homomorphic
image of the Grothendieck ring under the q-trace: for any A-module X,

qChX ≡ TrX(g
−1?) ∈ Ch(A), (3.3)

where g is the balancing element (3.2). For A = Uqs�(2), we thus have a 2p-dimensional
subspace in Ch spanned by q-traces over irreducible modules, i.e. by

γ ±(s) : x �→ Tr
X±

s
(g−1x), 1 � s � p,

γ ±(s) ∈ Ch,
(3.4)

with g−1 = Kp−1.

3.2.3. Pseudotraces. The space of q-characters Ch(Uqs�(2)) is not exhausted by q-traces
over irreducible modules; it also contains ‘pseudotraces’ associated with the projective
modules. To construct the pseudotraces (they can be considered quantum group counterparts
of pseudotraces in [45] and of pseudocharacters in (2.3)), we closely follow the strategy
proposed in [33]. We first consider the maps

σs : P+
s ⊕ P−

p−s → P+
s ⊕ P−

p−s , (3.5)

defined by its action on the corresponding basis vectors (see appendix B.1 and appendix B.2):
σs acts by zero on all basis elements except

σs : b(±,s)
n �→ α±

s t
(±,s)
n + β±

s b
(±,s)
n , (3.6)

with the arbitrary coefficients β±
s and α±

s �= 0. The map σs has the diagonal part:
b(±,s)

n �→ β±
s b

(±,s)
n , and the nondiagonal part: b(±,s)

n �→ α±
s t

(±,s)
n corresponding to the action

from the bottom (the socle) to the top of the projective module P+
s ⊕ P−

p−s .
For any such σs , we now define a functional on Uqs�(2) as

γ (s) : x �→ Tr
P+

s ⊕P−
p−s

(g−1xσs). (3.7)

3.2.4. Proposition. For 1 � s � p − 1,

γ (s) ∈ Ch

if and only if

α+
s = α−

s (3.8)

The proof is similar to the one in [33], proposition 2.3.4.

3.2.5. Remark. We make two comments on the operators σs that appear in the definition of the
pseudotraces γ (s). First, we emphasize that σs is not an intertwiner of Uqs�(2) modules. We
use these operators to reach nondiagonal elements of x in (3.7) like it is done in [45], where the

idea of the pseudotraces is based on the fact that the functional f (x) = Tr
((0 0

1 0

)
x
)

gives zero

value on diagonal matrices x and gives 1 on x = (0 1
0 0

)
. Second, a choice of the coefficients

α±
s and β±

s excepting (3.8) is a question of convenience. Nonzero β±
s leads to the addition of

γ ±(s) to γ (s) and the choice of α±
s is a normalization of γ (s), which is not canonical because

γ (s) is nilpotent and in the following subsection we choose it from the identification of Z
with Zcft.

10
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3.2.6. The γ basis. The space Ch of q-characters of Uqs�(2) is spanned by the elements

γ (s), γ +(s), γ −(p − s), 1 � s � p − 1, γ +(p), γ −(p), (3.9)

where γ ±(s) are defined in (3.4) and γ (s) are defined in (3.7) with σs in the definition (3.6)
fixed as

σs : b(±,s)
n �→ αs t

(±,s)
n , αs = −a0

[s]

p(q − q−1)
, (3.10)

where we fix the diagonal part of σs as zero, and a0 is the normalization constant from (2.3).
We thus have (3p−1) linear independent q-characters. In what follows, we call these elements
the γ basis.

3.2.7. Radford map of Ch(Uqs�(2)) For a Hopf algebra A with the right integral μ and the
left–right cointegral c (see the definitions in [32] and references therein), the Radford map
φφφ : A∗ → A and its inverse φφφ−1 : A → A∗ are given by

φφφ(β) =
∑
(c)

β(c′)c′′, φφφ−1(x) = μ(S(x)?). (3.11)

We now calculate the Radford map φφφ : Ch → Z on the γ basis (3.9) in Ch(Uqs�(2)) to
obtain the Radford basis in the center of Uqs�(2):

• The Radford map φφφ on the irreducible representation traces γ ±(s) is given by

φφφ(γ ±(s)) = φφφ±(s) =
∑
(c)

Tr
X±

s
(Kp−1c′)c′′,

where the left–right cointegral c is given by [32]

c = ζFp−1Ep−1
2p−1∑
j=0

Kj (3.12)

with the normalization ζ =
√

p

2
1

([p−1]!)2 and μ(c) = 1. In [32], φφφ±(s) were calculated in

the PBW basis,

φφφ±(s) = ζ

s−1∑
n=0

n∑
i=0

2p−1∑
j=0

(±1)i+j([i]!)2qj (s−1−2n)

[
s − n + i − 1

i

] [n

i

]
Fp−1−iEp−1−iKj ,

(3.13)

• The Radford map φφφ on the pseudotraces γ (s) is given by

φφφ(γ (s)) = φφφ(s) =
∑
(c)

Tr
P+

s ⊕P−
p−s

(Kp−1c′σs)c
′′,

where the map σs is defined in (3.5) and (3.10). In appendix C.3, we evaluate φφφ(s) as

φφφ(s) = αsζ

p−2∑
m=0

2p−1∑
j=0

(
s−1∑
n=0

qj(s−1−2n)B+
n,p−1−m(s)

+
p−s−1∑

k=0

qj(−s−1−2k)B−
k,p−1−m(p − s)

)
FmEmKj , 1 � s � p − 1, (3.14)

with αs given in (3.10), and the coefficients B+
n,m(s) and B−

k,m(p − s) are given in (C.4),
(C.5), and (C.6).
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3.2.8. Drinfeld map ofCh(Uqs�(2)). For a Hopf algebra A with the nondegenerate M-matrix
(M = R21R12 ∈ A ⊗ A), which satisfies the relations

(� ⊗ id)(M) = R32M13R23, M�(x) = �(x)M ∀x ∈ A,

the Drinfeld map χ : A∗ → A is defined by

χ(β) = (β ⊗ id)M. (3.15)

We emphasize that the Drinfeld map is defined for any Hopf algebra with a nondegenerate
M-matrix (not necessarily quasi-triangular). In a Hopf algebra A with the nondegenerate M-
matrix, the restriction of the Drinfeld map to the spaceCh of q-characters gives an isomorphism
Ch(A)→� Z(A) of associative algebras [43].

We now calculate the Drinfeld map χ : Ch → Z on the γ basis (3.9) in Ch(Uqs�(2)) to
obtain the Drinfeldbasis in the center of Uqs�(2):

• The Drinfeld map χ on the irreducible representation traces γ ±(s) is given by

χ(γ ±(s)) = χ±(s) = (
Tr

X±
s

⊗ id
)
((Kp−1 ⊗ 1)M), 1 � s � p,

where the M-matrix is given by [32]

M = 1

2p

p−1∑
m=0

p−1∑
n=0

2p−1∑
i=0

2p−1∑
j=0

(q − q−1)m+n

[m]![n]!
qm(m−1)/2+n(n−1)/2

×q−m2−mj+2nj−2ni−ij+miFmEnKj ⊗ EmFnKi. (3.16)

From ([32], proposition 4.3.1), we have

χα(s) = αp+1(−1)s+1
s−1∑
n=0

n∑
m=0

(q − q−1)2mq−(m+1)(m+s−1−2n)

×
[
s − n + m − 1

m

] [ n

m

]
EmFmKs−1+βp−2n+m, (3.17)

where 1 � s � p, α = ±1, and we set β = 0 if α = +1 and β = 1 if α = −1.

• The Drinfeld map χ on the pseudotraces γ (s) is given by

χ(γ (s)) = χ(s) = (Tr
P+

s ⊕P−
p−s

⊗ id)((Kp−1 ⊗ 1)M(σs ⊗ id)), 1 � s � p − 1,

where the map σs is defined in (3.5) and (3.10). From (3.16), we obtain χ(s) by direct
calculation,

χ(s) = αs

p−1∑
m=1

(−1)s−1 (q − q−1)2m

([m]!)2

(
s−1∑
n=0

q−m(m+s−2n)−(s−1−2n)B+
n,m(s)Km+s−1−2n

+
p−s−1∑

k=0

q−m(m−s−2k)+s+1+2kB−
k,m(p − s)Km−s−1−2k

)
EmFm, (3.18)

with αs given in (3.10) and the coefficients B+
n,m(s) and B−

k,m(p − s) are given in (C.4)–
(C.6).
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3.3. The modular group action on the center

The SL(2, Z) action on the Uqs�(2) center Z is defined as [32, 33]

S : a �→ φφφ(χ−1(a)),

T : a �→ e−2iπ c
24 S(vS−1(a)),

(3.19)

which follows [46–48]. Here, the Drinfeld map χ and the Radford map φφφ are defined in
(3.15) and (3.11), respectively, the central charge c of (1, p) models is given in (1.1), and the
ribbon central element v is given in [32]. For the ribbon element we also have the remarkable
expression v = e2iπL0 , where L0 is the zero mode of the energy–momentum tensor for the
(1, p) models (see [32, 33]).

There are two bases in Z. The first one is the Radford basis

{φφφ±(s),φφφ(r)|1 � s � p, 1 � r � p − 1} (3.20)

evaluated in (3.13) and (3.14), and the second one is the Drinfeld basis

{χ±(s), χ(r)|1 � s � p, 1 � r � p − 1} (3.21)

evaluated in (3.17) and (3.18). These bases are related by the S-transformation,

S(χ±(r)) = φφφ±(r), S(χ(r)) = φφφ(r). (3.22)

3.4. Theorem. The only nonzero multiplications in Z with respect to

• the Drinfeld basis (3.21) are given by2, for 1 � r, s � p, and α, β = ±,

χα(r)χβ(s) =
r+s−1∑

t=|r−s|+1
step=2

χ̃αβ(t), (3.23)

where

χ̃α(t) =
{
χα(t), 1 � t � p,

χα(2p − t) + 2χ−α(t − p), p + 1 � t � 2p − 1,

and, for 1 � r, s � p − 1,

χ+(r)χ(s) =
min(r+s−1,2p−r−s−1)∑

i=|r−s|+1
step=2

χ(i), (3.24)

χ−(p − r)χ(s) = −
min(r+s−1,2p−r−s−1)∑

i=|r−s|+1
step=2

χ(i). (3.25)

• the Radford basis (3.20) are given by, for 1 � r, s � p − 1,

φφφ(r)φφφ(r) = 1

Svac
[r;1]

(
φφφ(r) − Svac

[r;2]

Svac
[r;1]

φφφ+(r) − Svac
[r;3]

Svac
[r;1]

φφφ−(p − r)

)
, (3.26)

φφφ(r)φφφ+(r) = 1

Svac
[r;1]

φφφ+(r), φφφ(r)φφφ−(p − r) = 1

Svac
[r;1]

φφφ−(p − r), (3.27)

2 Multiplication (3.23) was calculated in [32] and was first obtained in [38] in the (1, p) models Verlinde-formula
context.
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φφφ+(p)φφφ+(p) = 1

Svac
[p;1]

φφφ+(p), φφφ−(p)φφφ−(p) = 1

Svac
[p+1;1]

φφφ−(p). (3.28)

Here,
(
Svac

[r;β]

) = (S[1;2][r;β]), 1 � r � p + 1, 1 � β � nr , is the ‘vacuum’ row, which
corresponds to the S-transformation of the unity χ+(1) = 1 and S[1;2][r;β] are defined in
(2.7) and (2.8).

The proof of theorem 3.4 is given in appendix C.5.
It is useful to emphasize that all structure constants in (3.23) and (3.24) are non-negative

integers and in (3.25) are non-positive integers.
Next, we recall that the space Zcft of torus amplitudes and the center Z of the quantum

group are identified as the modular group representations [32] and are isomorphic as associative
commutative algebras. Therefore, identifying the elements inZcft and Zwith the same modular-
transformation properties

χ±(s) �→ χ±
s (τ ), χ(s) �→ χs(τ ),

φφφ±(s) �→ χ±
s (−1/τ), φφφ(s) �→ χs(−1/τ),

we thus get two special bases in Zcft. The first one is the basis of the characters and
pseudocharacters given in (1.2) and (2.3), respectively, which corresponds to the Drinfeld
basis in Z. The second one is the basis (1.5), which corresponds to the Radford basis in Z. We
thus obtain proposition 1.1.1 using (3.23)–(3.25), and proposition 1.1.3 using (3.26)–(3.28).

3.4.1. Remark. The structure constants in (3.24) coincide with the structure constants in
ŝ�(2)k fusion algebra at the level k=p−2. We also note that the multiplications similar to the
ones in (3.24) and (3.25) appear in [49] but for a different basis in the space of vacuum torus
amplitudes.

4. Fusion rules and a generalized Verlinde formula

Here, we first give notes toward the generalization of the classical Verlinde formula [50] to
nonsemisimple cases. Then, we use the results in 3.4 to obtain a generalized Verlinde formula
for the (1, p) models.

4.1. Toward generalization of the Verlinde formula

We assume that the S-transformation from the modular group acting on a finite-dimensional
associative algebra, which we denote as Zcft, satisfy

S2|Zcft = id,

and block diagonalizes the structure constants (the ‘fusion’ coefficients) in Zcft with respect to
a distinguished basis {χi |i ∈ I }, where I is some finite set, to the block-diagonal structure

n1 × n1 ⊕ · · · ⊕ nr × nr ⊕ · · · ⊕ nP × nP , (4.1)

where P is the number of the Jordan blocks, 1 � r � P , and nr � 1 is the rank of the rth
Jordan block. We also assume that we have the unity 1 in Zcft.

We note that these assumptions are satisfied in (1, p) models.
We group the distinguished basis elements {χi |i ∈ I } in Zcft into blocks (sets) with respect

to the block-diagonal structure (4.1),{
χ[r;α] ≡ χn1+···+nr−1+α

∣∣1 � r � P, 1 � α � nr

}
.
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We also arrange the structure constants, describing the multiplication between χ[r;α] and χ[s;β]

with the result in [k; γ ] block, into a rank-3 tensor N
[k;γ ]
[r;α][s;β],

χ[r;α]χ[s;β] =
P∑

k=1

nk∑
γ=1

N
[k;γ ]
[r;α][s;β]χ[k;γ ]. (4.2)

For 1 � r � P and 1 � α � nr , we denote

φφφ[r;α] = S(χ[r;α]) =
P∑

j=1

nj∑
β=1

S[r;α][j ;β]χ[j ;β],

and the structure constants in this basis by φφφ
[k;ν]
[r;λ][s;μ],

φφφ[r;λ]φφφ[s;μ] =
P∑

k=1

nk∑
ν=1

φφφ
[k;ν]
[r;λ][s;μ]φφφ[k;ν]. (4.3)

4.1.1. Theorem. The structure constants N
[k;γ ]
[r;α][s;β] in Zcft are reproduced from the S-matrix

action,

N
[k;γ ]
[r;α][s;β] =

P∑
l=1

nl∑
λ,μ,ν=1

S[r;α][l;λ]S[s;β][l;μ]φφφ
[l;ν]
[l;λ][l;μ]S[l;ν][k;γ ], (4.4)

where the structure constants φφφ
[l;ν]
[l;λ][l;μ] are solutions of the following equations, for 1 � l � P

and 1 � μ, ν � nl ,
nl∑

λ=1

Svac
[l;λ]φφφ

[l;ν]
[l;λ][l;μ] = δμ,ν. (4.5)

Here,
(
Svac

[l;λ]

) = (S[1;2][l;λ]), 1 � l � P, 1 � λ � nl , is the ‘vacuum’ row, which corresponds
to the S-transformation of the unity χ2 = 1.

Proof. Formula (4.4) is just a relation between the structure constants in different bases related
by the S-transformation.

Let us consider the S-transformation of the unity. We have

S(1) =
P∑

i=1

ni∑
λ=1

Svac
[i;λ]χ[i;λ].

Next, we recall the assumption S2|Zcft = id. Therefore, we have

1 =
P∑

i=1

ni∑
λ=1

Svac
[i;λ]φφφ[i;λ].

Hence, using (4.3) and the assumption that the S-transformation block diagonalizes the
structure constants in Zcft to the block-diagonal structure (4.1), we obtain the identities

φφφ[l;μ] =
P∑

i=1

ni∑
λ=1

Svac
[i;λ]φφφ[i;λ]φφφ[l;μ] =

nl∑
λ,ν=1

Svac
[l;λ]φφφ

[l;ν]
[l;λ][l;μ]φφφ[l;ν],

for 1 � l � P and 1 � μ � nl . These identities give equations (4.5) on the structure constants
φφφ

[l;ν]
[l;λ][l;μ] in (4.3). This completes the proof. �
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4.1.2. Remark. The Verlinde-like formula (4.4) reproduces the classical Verlinde formula
[50] for semisimple (rational) theories, in which the S-transformation diagonalizes the structure
constants in a fusion algebra. Indeed, equations (4.5) take the following form

Svac
[l;1]φφφ

[l;1]
[l;1][l;1] = 1,

and we get the Verlinde formula

Nk
rs ≡ N

[k;1]
[r;1][s;1] =

P∑
l=1

SrlSslSlk

Svac
l

.

4.2. A generalized Verlinde formula for the (1, p) models

Here, we apply the results in 4.1.1 and 3.4 to obtain the structure constants (‘generalized’
fusion coefficients) with respect to the basis of the characters and pseudocharacters in Zcft
from the modular-group action on Zcft. These structure constants coincide with the structure
constants in the Drinfeld basis (3.21),

χ[r;α]χ[s;β] =
p+1∑
k=1

nk∑
γ=1

N
[k;γ ]
[r;α][s;β]χ[k;γ ], (4.6)

where we write the Drinfeld basis (3.21) in the following 2-index notation parallel to the one
in (2.5),

{χ[s;α]|1 � s � p + 1, 1 � α � ns}
= {χ(1), χ+(1), χ−(p − 1), . . . , χ(p − 1), χ+(p − 1), χ−(1), χ+(p), χ−(p)},

(4.7)

where ns = 3, for 1 � s � p − 1, and ns = 1, for s = p, p + 1, that is we group the
Drinfeld-basis elements into (p − 1) triplets {χ(s), χ+(s), χ−(p − s)}, for 1 � s � p − 1,
and into two singlets χ+(p), χ−(p). Similarly, for the Radford basis (3.20), we denote

{φφφ[s;α]|1 � s � p + 1, 1 � α � ns}
= {φφφ(1),φφφ+(1),φφφ−(p − 1), . . . ,φφφ(p − 1),φφφ+(p − 1),φφφ−(1),φφφ+(p),φφφ−(p)}.

(4.8)

In [32], it was shown that the SL(2, Z) action on the center Z is equivalent to the one on the
space Zcft of torus amplitudes for the (1, p) models. Therefore, the elements of the basis (4.7)
can be linearly expressed with respect to the basis (4.8),

χ[s;α] =
p+1∑
j=1

nj∑
β=1

S[s;α][j ;β]φφφ[j ;β] (4.9)

and vice versa

φφφ[s;α] =
p+1∑
j=1

nj∑
β=1

S[s;α][j ;β]χ[j ;β],

where the S-matrix elements S[s;α][j ;β] are given in (2.6)–(2.10).
Therefore, the structure constants N

[k;γ ]
[r;α][s;β] in (4.6) can be calculated by using (4.4) and

(4.5), where we must set P = p + 1, nr = 3, for 1 � r � p − 1, and np = np+1 = 1; and
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the structure constants φφφ
[l;ν]
[l;λ][l;μ] in the Radford basis (4.8) are solutions of (4.5) and coincide

with (3.26)–(3.28). For 1 � l � p − 1, these structure constants are

φφφ
[l;ν]
[l;1][l;μ] = 1

Svac
[l;1]

(
3∑

i=1

δμ,iδν,i − Svac
[l;2]

Svac
[l;1]

δμ,1δν,2 − Svac
[l;3]

Svac
[l;1]

δμ,1δν,3

)
, (4.10)

and

φφφ
[l;ν]
[l;2][l;μ] = 1

Svac
[l;1]

δμ,1δν,2, φφφ
[l;ν]
[l;3][l;μ] = 1

Svac
[l;1]

δμ,1δν,3, (4.11)

and, for l = p, p + 1,φφφ
[l;ν]
[l;1][l;μ] = 1

Svac
[l;1]

δμ,1δν,1. Hence, using (4.4), we finally get

N
[k;γ ]
[r;α][s;β] =

p+1∑
l=1

nl∑
λ=1

Svac
[l;1]S

[r;α]
[l;1] S

[s;β]
[l;λ] + Svac

[l;1]S
[r;α]
[l;λ] S

[s;β]
[l;1] − Svac

[l;λ]S
[r;α]
[l;1] S

[s;β]
[l;1](

Svac
[l;1]

)2 S
[l;λ]
[k;γ ], (4.12)

where we set S
[r;α]
[l;λ] ≡ S[r;α][l;λ]. The generalized Verlinde formula (4.12) reproduces the

structure constants in Zcft (given in 1.1.1) with respect to the basis (2.5) of the characters and
pseudocharacters.

4.2.1. Remark. The structure constants (4.12), for α, β, γ = 2, 3, coincide with the fusion
coefficients of the (1, p) models obtained in [38] and give the structure constants in the
Grothendieck ring for Uqs�(2) [32]. At the same time, the right-hand side of (4.12), for
α, β, γ = 2, 3, seems to be related to formula (5.28) from [30], giving the same fusion
coefficients.

5. The space of boundary states and the center of the quantum group

Here, we analyze the boundary states in the (1, p) models. In section 5.2, we choose a basis
in the space of the boundary states in such a way that this basis corresponds to the Radford
basis in the quantum group center Z. In section 5.3, we show that the states that correspond to
the Drinfeld elements in Z satisfy the Cardy conditions and therefore are the Cardy boundary
states.

5.1. Comments on Ishibashi, Cardy, Radford and Drinfeld boundary states

We call Ishibashi states any basis in the space of the boundary states Zcft. Ishibashi states
can be fixed by setting the matrix elements of the operator q

1
2 (L0+L̄0− c

12 ) (see [37]) between
them. We use the possibility in the following subsection to fix the Ishibashi states in such a
way that they correspond to the Radford states in the center of the quantum group under an
isomorphism F : Z → Zcft. Therefore, we call such chosen boundary states in Zcft the Radford
boundary states.

Cardy states are the boundary states that satisfy the Cardy equation (see for example [37]
formulas (2.13)–(2.15)). In this section, we show that under the isomorphism F : Z → Zcft
the Cardy states correspond to the Drinfeld states in Z.

5.2. Ishibashi and Radford boundary states

The equivalence between the triplet algebra Wp- and Uqs�(2)-representations categories leads
to an isomorphism F between the center Z of Uqs�(2) and the space of the boundary states in
the (1, p) models. To describe the isomorphism F , we first note that the space of the boundary
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states can be identified with the space Zcft of the vacuum torus amplitudes in the following
way. We let |±, s〉〉 with 1 � s � p and |s〉〉 with 1 � s � p − 1 denote the Ishibashi states
satisfying (cf [30])

〈〈r|q 1
2 (L0+L̄0− c

12 )|s〉〉 = δr,s

1

Svac
[s;1]

(
χs(q) − Svac

[s;2]

Svac
[s;1]

χ+
s (q) − Svac

[s;3]

Svac
[s;1]

χ−
p−s(q)

)
, (5.1)

〈〈r|q 1
2 (L0+L̄0− c

12 )|+, s〉〉 = δr,s

1

Svac
[s;1]

χ+
s (q), (5.2)

〈〈r|q 1
2 (L0+L̄0− c

12 )|−, p − s〉〉 = δr,s

1

Svac
[s;1]

χ−
p−s(q), (5.3)

〈〈α, r|q 1
2 (L0+L̄0− c

12 )|β, s〉〉 = 0, α, β = ±, 1 � r � p − 1, 1 � s � p, (5.4)

〈〈+, p|q 1
2 (L0+L̄0− c

12 )|+, p〉〉 = 1

Svac
[p;1]

χ+
p(q), (5.5)

〈〈−, p|q 1
2 (L0+L̄0− c

12 )|−, p〉〉 = 1

Svac
[p+1;1]

χ−
p (q), (5.6)

〈〈±, p|q 1
2 (L0+L̄0− c

12 )|∓, p〉〉 = 0, (5.7)

where the characters χ±
s (q) are given in (A.1) and the pseudocharacters χs(q) in (A.2).

5.2.1. Remark. We note that the Ishibashi states proposed in [30] are in correspondence with
those introduced in (5.1)–(5.7),

|Pt 〉〉 = Svac
[t;1]|t〉〉 + Svac

[t;2]|+, t〉〉 + Svac
[t;3]|−, p − t〉〉,

|Ut 〉〉 = |+, t〉〉 + |−, p − t〉〉, |U+
p 〉〉 = Svac

[p;1]|+, p〉〉, |U−
p 〉〉 = Svac

[p+1;1]|−, p〉〉,
where we note that Svac

[t;2] = Svac
[t;3]. In what follows, we need all (3p − 1) Ishibashi states but

not only 2p of them as in [30].

We next define the isomorphism F between the center Z and the space of boundary states,
which we similarly denote as Zcft,

F : Z → Zcft

by the formula

F(φφφ±(s)) = |±, s〉〉, F(φφφ(s)) = |s〉〉. (5.8)

We call the states |±, s〉〉 and |s〉〉 the Radford boundary states. Overlaps (5.1)–(5.7) between
the Radford boundary states can be written shortly in the 2-index notation parallel to the one
in (2.5),

〈〈[r;α]|q 1
2 (L0+L̄0− c

12 )|[s;β]〉〉 =
p+1∑
l=1

nl∑
γ=1

φφφ
[l;γ ]
[r;α][s;β]χ[l;γ ](q) = δr,s

nr∑
γ=1

φφφ
[r;γ ]
[r;α][r;β]χ[r;γ ](q), (5.9)

where nr = 3, for 1 � r � p − 1, and nr = 1, for r = p, p + 1, and we set

(|[s; 1]〉〉, |[s; 2]〉〉, |[s; 3]〉〉) = (|s〉〉, |+, s〉〉, |−, p − s〉〉), 1 � s � p − 1,

|[p; 1]〉〉 = |+, p〉〉, |[p + 1; 1]〉〉 = |−, p〉〉,
(5.10)

and analogously for the bra-vectors 〈〈[r;α]|; χ[r;γ ](q) are defined in (2.5), and the structure
constants φφφ

[r;γ ]
[r;α][r;β] are given in (4.10) and (4.11).
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5.3. Cardy and Drinfeld boundary states

We introduce the Drinfeld boundary states as the F images of the Drinfeld elements (3.21),

F(χ±(s)) = ||±, s〉〉, F(χ(s)) = ||s〉〉.
We call the states ||±, s〉〉 and ||s〉〉 the Drinfeld boundary states. From (5.8) and (4.9), the
Drinfeld boundary states are linearly expressed with respect to the Radford boundary states as

||[s;α]〉〉 =
p+1∑
j=1

nj∑
β=1

S[s;α][j ;β]|[j ;β]〉〉, (5.11)

where we also use the 2-index notation parallel to the one introduced in (5.10).

5.3.1. Proposition. The Drinfeld boundary states (5.11) satisfy the Cardy condition

〈〈[r;α]||q 1
2 (L0+L̄0− c

12 )||[s;β]〉〉 =
p+1∑
k=1

nk∑
γ=1

N
[k;γ ]
[r;α][s;β]χ[k;γ ](̃q), (5.12)

where q̃ = e−2iπ/τ , and the structure constants N
[k;γ ]
[r;α][s;β] are given in (4.12).

We note that the structure constants N
[k;γ ]
[r;α][s;β] are integers and are non-negative whenever α, β

and γ are not equal to 1.

Proof. This trivially follows from (5.11), (5.9) and (4.4). �

TheF images of the Drinfeld elements in the quantum group center satisfy the Cardy condition
(5.12) and are therefore the Cardy states.

5.3.2. Remark. We have (3p − 1) Drinfeld boundary states that satisfy the Cardy condition
(5.12) but only 2p of them, ||±, r〉〉, for 1 � r � p, have transparent physical meaning (see the
last paragraph in section 5.1 [30]). Thus, we can identify the Drinfeld and Cardy boundary
states. We also note that the Cardy states ||±, r〉〉 coincide with ||(r,±)〉〉 from [30].

6. Conclusions

In this paper, we propose a constructive method to study the boundary theories. The method
is based on the well-known Kazhdan–Lusztig correspondence stated for the (1, p) models in
[32], and for (p, q)-logarithmic models in [33, 5]. The Kazhdan–Lusztig correspondence for
the (1, p) models is an equivalence [34] between the representation categories of the triplet
algebra Wp and the restricted quantum group Uqs�(2), with q = e

iπ
p . The equivalence leads

to an isomorphism between the space of boundary states in the (1, p) models and the center
Z of Uqs�(2).

We found a basis in the quantum-group center Z in which the structure constants are
integer numbers and the 2p elements of the basis are the Drinfeld images of irreducible
module characters, which span the Grothendieck ring. Under identification of the quantum
group center and the space of (1, p) model boundary states, the elements of the Drinfeld
basis are mapped to the states satisfying the Cardy condition. Thus, we have (3p − 1) such
states, but only 2p of them have transparent physical meaning and (p − 1) satisfy the Cardy
condition only formally because the negative integer structure constants cannot be interpreted
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as multiplicities of any representations. These findings raise a good question about physical
meaning of these additional (p − 1) Cardy states.

It is interesting to find the Radford and Drinfeld boundary states in terms of a free-scalar
field, which is used for formulation of the (1, p) models as screening kernels. It would allow
us to understand better the meaning of (p − 1) boundary states ||[r; 1]〉〉.

We also propose the generalized Verlinde formula (4.12), which gives the integer structure
constants in the whole (3p − 1)-dimensional space of vacuum torus amplitudes for the (1, p)

models, in which the fusion algebra is a 2p-dimensional subalgebra (cf [49]) This formula
can therefore be considered as a generalization of (1, p) model Verlinde formulas derived in
[30, 38, 49].

We hope that our results can be extended into the logarithmic (p, q) models [5], for
which the Kazhdan–Lusztig dual quantum group is proposed in [33]. We thus conjecture that
there are 1

2 (3p − 1)(3q − 1) Cardy states in these (p, q) models. It would also be interesting
to obtain a generalized Verlinde formula for the logarithmic (p, q) models and compare the
results with the ones in [52, 9].

The subtle point is the braiding structure in the representation category of Wp. It is
known that the representation categories of Wp and Uqs�(2) are equivalent as the Abelian
categories [31]. Moreover, the tensor products of the irreducible and projective Uqs�(2)

modules coincide with the fusion of the corresponding Wp modules. This means that the
representation categories should be equivalent as the tensor categories. In [35] it is shown that
the Uqs�(2) representation category is not braided but the tensor products are commutative
for liftable (in terminology of [35]) modules. Taking into account that fusion is always
commutative by construction we can conclude that only Wp modules that correspond to
liftable Uqs�(2) modules can be realized in conformal field theory. Our opinion is that the
final answer to this question can be done only in terms of a field theoretic construction for Wp

modules.
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Appendix A. W characters and pseudocharacters

The Wp characters (1.2) are given by [38, 40]

χ+
s (q) = 1

η(q)

(
s

p
θp−s,p(q) + 2θ ′

p−s,p(q)

)
,

χ−
s (q) = 1

η(q)

(
s

p
θs,p(q) − 2θ ′

s,p(q)

)
,

1 � s � p, (A.1)

and the Wp pseudocharacters (2.3) are

χs(q) = 2a0

η(q)
log(q)θ ′

p−s,p(q), 1 � s � p − 1 (A.2)
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(see also [39]). Here, we use the eta function

η(q) = q
1

24

∞∏
n=1

(1 − qn)

and the theta functions

θs,p(q, z) =
∑

j∈Z+ s
2p

qpj 2
zj , |q| < 1, z ∈ C,

and set θs,p(q):=θs,p(q, 1) and θ ′
s,p(q):=z ∂

∂z
θs,p(q, z)|z=1.

Appendix B. Irreducible and projective Uqs�(2) modules

Here, we recall the definition of the irreducible and projective Uqs�(2) modules [32].

B.1. Irreducible Uqs�(2) modules

The irreducible Uqs�(2) modules are labeled by their highest weights qs−1, where s ∈ Z/2pZ.
We also parameterize the same highest weights as αqs−1, where α=± and 1 � s � p. Then,
for 1 � s � p, the irreducible module with the highest weight ±qs−1 is denoted by X±

s . The
dimension-s module X±

s is spanned by elements a±
n , 0 � n � s−1, where a±

0 is the highest
weight vector and the the left action of the algebra is given by

Ka±
n = ±qs−1−2na±

n , Ea±
n = ±[n][s − n]a±

n−1, Fa±
n = a±

n+1,

where we set a±
−1 = a±

s = 0.

B.2. Projective Uqs�(2)-modules

The module P±
s , 1 � s � p − 1, is the projective module whose irreducible quotient is given

by X±
s . Their structure can be schematically depicted as (see the explanation of notation in

[34])

X±
s•

X∓
p−s•

X∓
p−s•

X±
s• (B.1)

B.2.1. P+
s . Let s be an integer 1 � s � p − 1. The projective module P+

s has the basis{
t(+,s)
n , b(+,s)

n

}
0�n�s−1 ∪ {

l
(+,s)
k , r

(+,s)
k

}
0�k�p−s−1, (B.2)
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where {t(+,s)
n }0�n�s−1 is the basis corresponding to the top module in (B.1),

{
b(+,s)

n

}
0�n�s−1 to

the bottom ,
{
l
(+,s)
k

}
0�k�p−s−1 to the left, and

{
r
(+,s)
k

}
0�k�p−s−1 to the right module, with the

Uqs�(2) action given by

K l
(+,s)
k = −qp−s−1−2k l

(+,s)
k , Kr

(+,s)
k = −qp−s−1−2kr

(+,s)
k , 0 � k � p − s − 1,

Kb(+,s)
n = qs−1−2nb(+,s)

n , K t(+,s)
n = qs−1−2nt(+,s)

n , 0 � n � s − 1,

El
(+,s)
k = −[k][p − s − k]l(+,s)

k−1 , 0 � k � p − s − 1 (with l
(+,s)
−1 ≡ 0),

Er
(+,s)
k =

{
−[k][p − s − k]r(+,s)

k−1 , 1 � k � p − s − 1,

b
(+,s)
s−1 , k = 0,

Eb(+,s)
n = [n][s − n]b(+,s)

n−1 , 0 � n � s − 1 (with b
(+,s)
−1 ≡ 0),

Et(+,s)
n =

{
[n][s − n]t(+,s)

n−1 + b(+,s)
n−1 , 1 � n � s − 1,

l
(+,s)
p−s−1, n = 0,

and

F l
(+,s)
k =

{
l
(+,s)
k+1 , 0 � k � p − s − 2,

b
(+,s)
0 , k = p − s − 1,

F r
(+,s)
k = r

(+,s)
k+1 , 0 � k � p − s − 1 (with r

(+,s)
p−s ≡ 0),

Fb(+,s)
n = b

(+,s)
n+1 , 0 � n � s − 1 (with b(+,s)

s ≡ 0),

F t(+,s)
n =

{
t
(+,s)
n+1 , 0 � n � s − 2,

r
(+,s)
0 , n = s − 1.

B.2.2. P−
p−s . Let s be an integer 1 � s � p − 1. The projective module P−

p−s has the basis{
t
(−,s)
k , b

(−,s)
k

}
0�k�p−s−1 ∪ {

l(−,s)
n , r(−,s)

n

}
0�n�s−1, (B.3)

where
{
t
(−,s)
k

}
0�k�p−s−1 is the basis corresponding to the top module in (B.1),{

b
(−,s)
k

}
0�k�p−s−1 to the bottom,

{
l(−,s)
n

}
0�n�s−1 to the left, and

{
r(−,s)
n

}
0�n�s−1 to the right

module, with the Uqs�(2) action given by

Kb
(−,s)
k = −qp−s−1−2kb

(−,s)
k , K t

(−,s)
k = −qp−s−1−2k t

(−,s)
k , 0 � k � p − s − 1,

K l(−,s)
n = qs−1−2nl(−,s)

n , Kr(−,s)
n = qs−1−2nr(−,s)

n , 0 � n � s − 1,

Eb
(−,s)
k = −[k][p − s − k]b(−,s)

k−1 , 0 � k � p − s − 1 (with b
(−,s)
−1 ≡ 0),

Et
(−,s)
k =

{
−[k][p − s − k]t(−,s)

k−1 + b(−,s)
k−1 , 1 � k � p − s − 1,

l
(−,s)
s−1 , k = 0,

El(−,s)
n = [n][s − n]l(−,s)

n−1 , 0 � n � s − 1 (with l
(−,s)
−1 ≡ 0),

Er(−,s)
n =

{
[n][s − n]r(−,s)

n−1 , 1 � n � s − 1,

b
(−,s)
p−s−1, n = 0,

andFb
(−,s)
k = b

(−,s)
k+1 , 0 � k � p − s − 1 (with b

(−,s)
p−s ≡ 0),
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F t
(−,s)
k =

{
t
(−,s)
k+1 , 0 � k � p − s − 2,

r
(−,s)
0 , k = p − s − 1,

F l(−,s)
n =

{
l
(−,s)
n+1 , 0 � n � s − 2,

b
(−,s)
0 , n = s − 1,

F r(−,s)
n = r

(−,s)
n+1 , 0 � n � s − 1 (with r(−,s)

s ≡ 0).

Appendix C. Radford images of pseudotraces and the proof of theorem 3.4

Here, we present bulky calculation of the Radford images of pseudotraces and give the proof
of theorem 3.4 in appendix C.5.

C.1. PBW-basis action on projectives

The elements of the PBW basis ofUqs�(2) are enumerated as EiKjF � with 0 � i � p−1, 0 �
j � 2p − 1, 0 � � � p − 1. We calculate the PBW-basis action on the basis elements in the
projective modules P±

s (see (B.2) and (B.3)). Here, we closely follow the similar but more
complicated calculation in [33]. We use the well-known identity (see, e.g., [53])

FmEm =
m−1∏
i=0

(
C − q2i+1K + q−2i−1K−1

(q − q−1)2

)
, m < p, (C.1)

where the Casimir element is

C = FE +
qK + q−1K−1

(q − q−1)2
.

Using (C.1), we calculate the action of FmEm for 1 � m � p − 1 on t(+,s)
n and t(−,s)

k with
the result

FmEmt(+,s)
n =

m−1∏
i=0

(
b(+,s)

n

∂

∂ t
(+,s)
n

+ [s + i − n][n − i]

)
t(+,s)
n

= B+
n,m(s)b(+,s)

n + T+
n,m(s)t(+,s)

n , 0 � n � s − 1, (C.2)

and

FmEmt
(−,s)
k =

m−1∏
i=0

(
b

(−,s)
k

∂

∂ t
(−,s)
k

− [p − s + i − k][k − i]

)
t
(−,s)
k

= B−
k,m(p − s)b

(−,s)
k + T−

k,m(p − s)t
(−,s)
k , 0 � k � p − s − 1, (C.3)

where the coefficients B±
n,m(s) and T±

n,m(s) are

• for 1 � m � n,

B±
n,m(s) = (±1)m−1

n∏
j=n−m+1

[j][s − j]
n∑

i=n−m+1

1

[i][s − i]
,

T±
n,m(s) = (±1)m

n∏
i=n−m+1

[i][s − i],

(C.4)
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• for n + 1 � m � p − 1, T+
n,m(s) = 0,

B+
n,m(s) = (−1)m−n−1

[
s − 1

n

] [
s − 1 + m − n

s

]
([n]![m − n − 1]!)2, (C.5)

and, for k + 1 � m � p − 1, T−
k,m(p − s) = 0,

B−
k,m(p − s) = (−1)k

[
s + k

k

] [
s − 1

m − k − 1

]
([k]![m − k − 1]!)2. (C.6)

C.2. Idempotents and nilpotents

Here, we describe the Uqs�(2) center in terms of primitive idempotents and nilpotents. In
theorem 3.4, we use this basis to calculate the structure constants in the center Z with respect
to the Drinfeld and Radford bases.

C.2.1. Proposition [32]. The center Z of Uqs�(2) at q = e
iπ
p is (3p−1) dimensional. Its

associative commutative algebra structure is described as follows: there are two ‘special’
primitive idempotents e0 and ep, p−1 other primitive idempotents es , 1 � s � p − 1, and
2(p−1) elements w±

s (1 � s � p−1) in the radical such that

eses ′ = δs,s ′es , s, s ′ = 0, . . . , p, (C.7)

esw
±
s ′ = δs,s ′w±

s ′ , 0 � s � p, 1 � s ′ � p − 1, (C.8)

w±
s w±

s ′ = w±
s w∓

s ′ = 0, 1 � s, s ′ � p − 1. (C.9)

We fix the normalization of the nilpotents w+
s and w−

s such that they act as

w+
s t

(+,s)
n = b(+,s)

n , w−
s t

(−,s)
k = b

(−,s)
k

in terms of the respective bases in the projective modules P+
s and P−

p−s defined in
appendix B.1 and appendix B.2.

We call es ,w
±
s the canonical central elements.

C.2.2. Central elements decomposition. For any central element A ∈ Z and its decomposition

A =
p∑

s=0

ases +
p−1∑
s=1

(
c+
s w

+
s + c−

s w−
s

)
(C.10)

with respect to the canonical central elements, the coefficient as is the eigenvalue of A in the
irreducible representation X+

s , the coefficient c+
s is read off from the relation At(+,s)

n = c+
s b

(+,s)
n

in P+
s , and c−

s , similarly, from the relation At
(−,s)
k = c−

s b
(−,s)
k in P−

p−s .

C.3. Calculation of φφφ(γ (s))

The Radford map φφφ on pseudotraces γ (s) is given by

φφφ(γ (s)) = φφφ(s) =
∑
(c)

Tr
P+

s ⊕P−
p−s

(Kp−1c′σs)c
′′,
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where the map σs is defined in (3.5) and (3.10), the projective modules P±
s are defined in

appendix B.2 and

�(c) = ζ

p−1∑
r=0

p−1∑
s ′=0

2p−1∑
j=0

(−1)r+s ′
q−2(r+1)(s ′+1)−r(r+1)−s ′(s ′+1)

×F rEp−1−s ′
Kr−p+1+j ⊗ Fp−1−rEs ′

Kp−1−s ′+j ,

with ζ =
√

p

2
1

([p−1]!)2 . Using (C.2) and (C.3), we obtain

φφφ(s) = Ω+(s) + Ω−(p − s), (C.11)

where we introduce

Ω+(s) =
∑
(c)

TrP+
s
(Kp−1c′σs)c

′′

= αsζ

p−2∑
m=0

2p−1∑
j=0

s−1∑
n=0

qj (s−1−2n)B+
n,p−1−m(s)FmEmKj , (C.12)

Ω−(p − s) =
∑
(c)

Tr
P−

p−s

(Kp−1c′σs)c
′′

= αsζ

p−2∑
m=0

2p−1∑
j=0

p−s−1∑
k=0

qj (−s−1−2k)B−
k,p−1−m(p − s)FmEmKj , (C.13)

with αs given in (3.10), and the coefficients B+
n,m(s) and B−

k,m(p − s) are given in (C.4)–(C.6).

C.4. Proposition. The Radford images on the pseudotraces γ (s) are decomposed with respect
to the canonical central elements (see C.2.1) as

φφφ(s) = a0(−1)p−s

√
2p

qs − q−s

(
es − qs + q−s

[s]2
ws

)
,

where ws = w+
s + w−

s .

Proof. In the calculation, we closely follow the strategy proposed in appendix C.1. We use
(C.11) to evaluate the action of φφφ(s) on the modules P±

s ′ , 1 � s ′ � p − 1. This action is
nonzero only on the module P+

s ⊕ P−
p−s . Because φφφ(s) is central, it suffices to evaluate the

action in each direct summand only on any single vector, which we choose as t(±,s)
0 . We first

evaluate the action of Ω+(s) (see (C.11) and (C.12)) on t(+,s)
0 as

Ω+(s)t
(+,s)
0 = αsζ

s−1∑
n=0

2p−1∑
j=0

qj (s−1−2n)B+
n,p−1(s)K

j t
(+,s)
0 + αsζ

s−1∑
n=0

p−2∑
m=1

2p−1∑
j=0

qj (s−1−2n)

×B+
n,p−1−m(s)Kj

m−1∏
r=1

(
C − q2r+1K + q−2r−1K−1

(q − q−1)2

)
b

(+,s)
0 ,

where we use (C.1) and the formula FEt
(+,s)
0 = b

(+,s)
0 (see appendix B.1). Then, using (C.4)

and (C.5), we obtain

Ω+(s)t
(+,s)
0 = αs(−1)p−s−1 p

√
2p

[s]2
t
(+,s)
0
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+ αs2p(−1)pζ

(
s−1∑
m=1

(−1)m
m∏

j=1

[j ][s − j ]
p−2−m∏

r=1

[r][s + r]
m∑

i=1

1

[i][s − i]

+ (−1)s
[s − 1]!

[s]

p−2∑
m=s

[m]![m − s]!
p−2−m∏

r=1

[r][s + r]

)
b

(+,s)
0 ,

where we set
∑0

m=1 ≡ 0 and
∏0

r=1 ≡ 1, and the simple calculation gives

Ω+(s)t
(+,s)
0 = αs(−1)p−s−1 p

√
2p

[s]2
t
(+,s)
0 + αs2p(−1)pζ(f s,p + gs,p)b

(+,s)
0 , (C.14)

where we introduce the following notation:

f s,p = (−1)s−1([s − 1]![p − s − 1]!)2
s−1∑
i=1

1

[i][s − i]
,

gs,p = (−1)s
[s − 1]![p − s − 1]!

[s]

p−s−1∑
m=1

[m + s]![p − s − 1 − m]!

[m][s + m]
,

(C.15)

and the straightforward calculation gives us

gs,p = (−1)p−1fp−s,p.

Therefore, from (C.14), we finally obtain

Ω+(s)t
(+,s)
0 = αs(−1)p−s−1 p

√
2p

[s]2
t
(+,s)
0 + αs2pζ((−1)pf s,p − fp−s,p)b

(+,s)
0 . (C.16)

We next evaluate the action of Ω−(p − s) (see (C.11) and (C.13)) on t(+,s)
0 as

Ω−(p − s)t
(+,s)
0 = αsζ

p−s−1∑
k=0

2p−1∑
j=0

q−2j (k+1)B−
k,p−1(p − s)t

(+,s)
0

+ αsζ

p−s−1∑
k=0

p−2∑
m=1

2p−1∑
j=0

q−2j (k+1)B−
k,p−1−m(p − s)

×
m−1∏
r=1

(
C − q2r+1K + q−2r−1K−1

(q − q−1)2

)
b

(+,s)
0 = 0,

where we use the simple identity
∑2p−1

j=0 q−2j (k+1) = 0. Hence, using (C.11), (C.15), and
(C.16), and the identity

p−s−1∑
i=1

1

[i][s + i]
−

s−1∑
i=1

1

[i][s − i]
= qs + q−s

[s]2
,

we finally obtain the action of φφφ(s) on t(+,s)
0 as

φφφ(s)t
(±,s)
0 = (−1)p−s a0

q − q−1

√
2p

[s]
t
(±,s)
0 + a0(−1)p−s−1 qs + q−s

q − q−1

√
2p

[s]3
b

(±,s)
0 ,

where we also give the result of the analogous calculation of the action of φφφ(s) on t(−,s)
0 . This

completes the proof. �
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C.5. The proof of theorem 3.4

We recall the definition of the canonical central elements (primitive idempotents es and
nilpotents w±

s ) given in appendix C.2.

C.5.1. Proposition [32]. 3 For 1 � s � p − 1,

φφφ+(s) = ωsw
+
s , φφφ−(p − s) = ωsw

−
s , ωs = (−1)p−s−1 p

√
2p

[s]2
, (C.17)

φφφ+(p) = p
√

2pep, φφφ−(p) = (−1)p+1p
√

2pe0. (C.18)

In proposition C.4, we evaluate φφφ(s) as4

φφφ(s) = a0(−1)p−s

√
2p

qs − q−s

(
es − qs + q−s

[s]2
ws

)
, (C.19)

where ws = w+
s + w−

s .
Using (C.17)–(C.19) and (C.7)–(C.9), we calculate the multiplications (3.26)–(3.28)

straightforwardly.
The multiplication (3.23) has been proven in [32].

C.5.2. Proposition. For 1 � s � p − 1,

χ(s) = a0
1√
2p

p−1∑
j=1

(−1)p+s+j (qsj − q−sj )

(
p − j

p
φφφ+(j) − j

p
φφφ−(p − j)

)
. (C.20)

Proof. We calculate χ(s) using the S-transformation (3.22), the identity S2|Z = id, and
(C.19). This gives χ(s) as

χ(s) = S(φφφ(s)), 1 � s � p − 1. (C.21)

In formula (C.19), the primitive idempotents es and the nilpotents ws can be linearly expressed
with respect to the Drinfeld basis as

es = 1

2p2

(
p−1∑
j=1

(−1)j−1((p + 1 − j)(qs(j−1) + q−s(j−1)) − (p − 1 − j)(qs(j+1) + q−s(j+1)))

× (χ+(j) + (−1)p−sχ−(j)) − (qs + q−s)((−1)p−sχ+(p) + χ−(p))

)
,

and

ws = (−1)p−s−1 [s]2

2p2

(
p−1∑
j=1

(−1)p+s+j (qjs + q−js)κκκ(j) + χ+(p) + (−1)p−sχ−(p)

)
,

where we introduce the notation

κκκ(j) = χ+(j) + χ−(p − j), 1 � j � p − 1. (C.22)

3 We note a misprint in ([32], lemma 4.5.1): φ̂φφ
−
(s) should be replaced by ωp−sw

−
p−s and ωs should be replaced by

(−1)p−s−1 p
√

2p

[s]2 .
4 We note that φφφ(s) = a0ρ̂(s) in the terminology of ([32], section 5).
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We thus obtain

φφφ(s) = a0
1√
2p

p−1∑
r=1

(−1)r+s+p(qrs − q−rs)

(
p − r

p
χ+(r) − r

p
χ−(p − r)

)
. (C.23)

Hence, we get χ(s) as in (C.20) using (C.21) and (3.22). �

Proposition C.5.2 obviously gives, for 1 � r, s � p − 1,

χ(r)χ(s) = 0, χ±(p)χ(s) = 0.

We next calculate multiplications (3.24) and (3.25).

C.5.3. Lemma. We have, for 1 � s � p − 1,

χ(s) = χ+(s)χ(1), (C.24)

χ(s) = −χ−(p − s)χ(1). (C.25)

Therefore, we have

κκκ(r)χ(s) = 0, (C.26)

with κκκ(s) given in (C.22).

Proof. We have, for 1 � s � p,

χ+(s) = sep + (−1)s−1se0 + (−1)s

×
p−1∑
j=1

(
− [sj ]

[j]
ej +

(s + 1)[(s − 1)j ] − (s − 1)[(s + 1)j ]

[j]3
wj

)
, (C.27)

and, for 0 � s � p − 1,

χ−(p − s) = (p − s)ep + (−1)s−1(p − s)e0 + (−1)s

×
p−1∑
j=1

( [sj ]

[j]
ej +

(p − s − 1)[(s − 1)j ] − (p − s + 1)[(s + 1)j ]

[j]3
wj

)
, (C.28)

with wj = w+
j + w−

j . Hence, we obtain (C.24) and (C.25) by use of (C.20), (C.27), and
(C.28). �

To prove (3.24) and (3.25), we use (3.23) and lemma C.5.3. This completes the proof of
theorem 3.4.
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